Changes in Parthenogenetic Imprinting Patterns during Reprogramming by Cell Fusion
نویسندگان
چکیده
Differentiated somatic cells can be reprogrammed into the pluripotent state by cell-cell fusion. In the pluripotent state, reprogrammed cells may then self-renew and differentiate into all three germ layers. Fusion-induced reprogramming also epigenetically modifies the somatic cell genome through DNA demethylation, X chromosome reactivation, and histone modification. In this study, we investigated whether fusion with embryonic stem cells (ESCs) also reprograms genomic imprinting patterns in somatic cells. In particular, we examined imprinting changes in parthenogenetic neural stem cells fused with biparental ESCs, as well as in biparental neural stem cells fused with parthenogenetic ESCs. The resulting hybrid cells expressed the pluripotency markers Oct4 and Nanog. In addition, methylation of several imprinted genes except Peg3 was comparable between hybrid cells and ESCs. This finding indicates that reprogramming by cell fusion does not necessarily reverse the status of all imprinted genes to the state of pluripotent fusion partner.
منابع مشابه
Conversion of genomic imprinting by reprogramming and redifferentiation.
Induced pluripotent stem cells (iPSCs), generated from somatic cells by overexpression of transcription factors Oct4, Sox2, Klf4 and c-Myc have the same characteristics as pluripotent embryonic stem cells (ESCs). iPSCs reprogrammed from differentiated cells undergo epigenetic modification during reprogramming, and ultimately acquire a similar epigenetic state to that of ESCs. In this study, the...
متن کاملI-12: Nuclear Reprogramming in Bovin Somatic Cell Nuclear Transfer
Somatic cell nuclear transfer (SCNT or cloning) returns a differentiated cell to a totipotent status; a process termed nuclear reprogramming. Reproductive cloning has potential applications in both agriculture and biomedicine, but is limited by low efficiency. To understand the deficiencies of nuclear reprogramming, our research has focused on both candidate genes and global gene expression pat...
متن کاملAccumulation of instability in serial differentiation and reprogramming of parthenogenetic human cells.
Human leukocyte antigen-homozygous parthenogenetic stem cells (pSC) could provide a source of progenitors for regenerative medicine, lowering the need for immune suppression in patients. However, the high level of homozygosis and the lack of a paternal genome might pose a safety challenge for their therapeutic use, and no study so far has evaluated the spread and significance of gene expression...
متن کاملTemporal and spatial selection against parthenogenetic cells during development of fetal chimeras.
The fate of parthenogenetic cells was investigated during development of fetal and early postnatal chimeras. On day 13 of embryonic development, considerable contribution of parthenogenetic cells was observed in all tissues of chimeric embryos, although selection against parthenogenetic cells seemed to start before day 13. Between days 13 and 15 of development, parthenogenetic cells came under ...
متن کاملImprinted gene expression in in vivo- and in vitro-produced bovine embryos and chorio-allantoic membranes.
Cloning by nuclear transfer is often associated with poor results due to abnormal nuclear reprogramming of somatic donor cells and altered gene expression patterns. We investigated the expression patterns of imprinted genes IGF2 and IGF2R in 33- to 36-day bovine embryos and chorio-allantoic membranes derived from in vivo- and in vitro-produced embryos by somatic cell nuclear transfer (SCNT), pa...
متن کامل